Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 108(2): 116-21, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24928368

RESUMO

AIMS: A high consumption of fructose leads not only to peripheral changes in insulin sensitivity and vascular function, but also to central changes in several brain regions. Given the role of the endogenous cannabinoid system in the control of energy intake, we undertook a pilot study to determine whether a high fructose diet produced changes in brain CB1 receptor functionality. MAIN METHODS: Male rats given access ad libitum to normal chow were given either water, glucose or fructose solutions to drink. CB1 receptor functionality was measured autoradiographically as the increase in [(35)S]GTPγS binding produced by the agonist CP55,940. KEY FINDINGS: Seven regions were investigated: the prefrontal cortex, caudate-putamen, hippocampal CA1-CA3, dentate gyrus, amygdala, and dorsomedial and ventromedial hypothalami. Two-way robust Wilcoxon analyses for each brain region indicated that the dietary treatment did not produce significant main effects upon agonist-stimulated [(35)S]GTPγS binding in any of the regions, in contrast to a significant main effect upon both leptin and adiponectin levels in the blood. However, a MANCOVA of the data controlling for leptin and adiponectin as co-variables identified a significant effect of glucose and fructose treatment for five weeks upon the [(35)S]GTPγS response in the ventromedial hypothalamus, a region of importance for regulation of appetite. SIGNIFICANCE: It is concluded from this pilot study that palatable solutions do not produce overt changes in brain CB1 receptor functionality, although subtle changes in discrete brain regions may occur.


Assuntos
Encéfalo/metabolismo , Carboidratos da Dieta/administração & dosagem , Frutose/administração & dosagem , Glucose/administração & dosagem , Receptor CB1 de Canabinoide/metabolismo , Adiponectina/sangue , Análise de Variância , Animais , Autorradiografia/métodos , Cicloexanóis/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Leptina/sangue , Masculino , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas
2.
Exp Brain Res ; 232(6): 1793-803, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24584836

RESUMO

The olfactory bulbectomized (OB) rat, an animal model of chronic depression with comorbid anxiety, exhibits a profound dysregulation of the brain serotonergic signalling, a neurotransmission system involved in pain transmission and modulation. We here report an increased nociceptive response of OB rats in the tail flick test which is reverted after chronic, but not acute, administration of fluoxetine. Autoradiographic studies demonstrated down-regulation of 5-HT transporters ([(3)H]citalopram binding) and decreased functionality of 5-HT1A receptors (8-OH-DPAT-stimulated [(35)S]GTPγS binding) in the dorsal horn of the lumbar spinal cord in OB rats. Acute administration of fluoxetine (5-40 mg/kg i.p.) did not modify tail flick latencies in OB rats. However, chronic fluoxetine (10 mg/kg/day s.c., 14 days; osmotic minipumps) progressively attenuated OB-associated thermal hyperalgesia, and a total normalization of the nociceptive response was achieved at the end of the treatment with the antidepressant. In these animals, autoradiographic studies revealed further down-regulation of 5-HT transporters and normalization in the functionality of 5-HT1A receptors on the spinal cord. On the other hand, acute morphine (0.5-10 mg/kg s.c.) produced a similar analgesic effect in OB and sham and OB rats, and no changes were detected in the density ([(3)H]DAMGO binding) and functionality (DAMGO-stimulated [(35)S]GTPγS binding) of spinal µ-opioid receptors in OB rats before and after chronic fluoxetine. Our findings demonstrate the participation of the spinal serotonergic system in the increased thermal nociception exhibited by the OB rat and the antinociceptive effect of chronic fluoxetine in this animal model of depression.


Assuntos
Depressão/complicações , Depressão/patologia , Hiperalgesia/etiologia , Serotonina/metabolismo , Medula Espinal/metabolismo , Animais , Antidepressivos/uso terapêutico , Autorradiografia , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacocinética , Comportamento Exploratório/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Hiperalgesia/tratamento farmacológico , Masculino , Morfina/uso terapêutico , Neurotransmissores/farmacocinética , Bulbo Olfatório/lesões , Bulbo Olfatório/cirurgia , Medição da Dor , Radiografia , Radioisótopos/farmacocinética , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Opioides mu/metabolismo , Serotoninérgicos/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Medula Espinal/diagnóstico por imagem , Medula Espinal/efeitos dos fármacos
3.
Curr Pharm Des ; 20(23): 3751-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24180399

RESUMO

The regulation of the activity of brain monoaminergic systems has been the focus of attention of many studies since the first antidepressant drug emerged 50 years ago. The search for novel antidepressants is deeply linked to the search for fast-acting strategies, taking into account that 2-4 weeks of treatment with classical antidepressant are required before clinical remission of the symptoms becomes evident. In the recent years several hypotheses have been proposed on the basis of the existence of alterations in brain synaptic plasticity in major depression. Recent evidences support a role for 5-HT4 receptors in the pathogenesis of depression as well as in the mechanism of action of antidepressant drugs. In fact, chronic treatment with antidepressant drugs appears to modulate, at different levels, the signaling pathway associated to 5-HT4 receptors, as well as their levels of expression in the brain. Moreover, several experimental studies have identified this receptor subtype as a promising new target for fast-acting antidepressant strategy: the administration of partial agonists of this receptor induces a number of responses similar to those observed after chronic treatment with classical antidepressants, but with a rapid onset of action. They include efficacy in behavioral models of depression, rapid desensitization of 5-HT1A autoreceptors, and modifications in the expression of several molecular markers of brain neuroplasticity. Although much work remains to be done in order to clarify the real therapeutic potential of these drugs, the evidences reviewed below support the hypothesis that 5-HT4 receptor partial agonists could behave as rapid and effective antidepressants.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Descoberta de Drogas/métodos , Receptores 5-HT4 de Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Animais , Antidepressivos/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Depressão/metabolismo , Depressão/psicologia , Modelos Animais de Doenças , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Ligação Proteica , Agonistas do Receptor 5-HT4 de Serotonina/administração & dosagem , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
4.
PLoS One ; 7(7): e42111, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848724

RESUMO

Typically, approach behaviour is displayed in the context of moving towards a desired goal, while avoidance behaviour is displayed in the context of moving away from threatening or novel stimuli. In the current research, we detected three sub-populations of C57BL/6J mice that spontaneously responded with avoiding, balancing or approaching behaviours in the presence of the same conflicting stimuli. While the balancing animals reacted with balanced responses between approach and avoidance, the avoiding or approaching animals exhibited inhibitory or advance responses towards one of the conflicting inputs, respectively. Individual differences in approach and avoidance motivation might be modulated by the normal variance in the level of functioning of different systems, such as endocannabinoid system (ECS). The present research was aimed at analysing the ECS involvement on approach and avoidance behavioural processes. To this aim, in the three selected sub-populations of mice that exhibited avoiding or balancing or approaching responses in an approach/avoidance Y-maze we analysed density and functionality of CB(1) receptors as well as enzyme fatty acid amide hydrolase activity in different brain regions, including the networks functionally responsible for emotional and motivational control. The main finding of the present study demonstrates that in both approaching and avoiding animals higher CB(1) receptor density in the amygdaloidal centro-medial nuclei and in the hypothalamic ventro-medial nucleus was found when compared with the CB(1) receptor density exhibited by the balancing animals. The characterization of the individual differences to respond in a motivationally based manner is relevant to clarify how the individual differences in ECS activity are associated with differences in motivational and affective functioning.


Assuntos
Aprendizagem da Esquiva , Motivação/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Amidoidrolases/metabolismo , Animais , Autorradiografia , Encéfalo/metabolismo , Encéfalo/fisiologia , Cicloexanóis/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Neurosci Lett ; 515(2): 181-6, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22480692

RESUMO

Serotonin and noradrenaline reuptake inhibitors have shown to produce antinociceptive effects in several animal models of neuropathic pain. In the present work, we have analyzed the density of brain and spinal serotonin and noradrenaline transporters (5-HTT and NAT) in a rat model of neuropathic pain, the spinal nerve ligation (SNL). Quantitative autoradiography revealed a significant decrease in the density of 5-HTT ([(3)H]citalopram binding) at the level of the lumbar spinal cord following 2 weeks of neuropathic surgery (lamina V, -40%: 6.01±0.64 nCi/mg tissue in sham-animals vs 3.59±1.56 in SNL-animals; lamina X, -30%: 9.10±2.00 vs 6.40±1.93 and lamina IX, -22%: 12.01±2.41 vs 9.42±1.58). By contrast, NAT density ([(3)H]nisoxetine binding) was significantly increased (lamina I-II, +34%: 2.20±0.45 vs 2.96±0.65; lamina V, +57%: 1.34±0.28 vs 2.11±0.66; and lamina IX, +58%: 2.39±0.71 vs 3.78±1.10). At supraspinal structures, SNL induced adaptive changes only in the density of 5-HTT (septal nuclei, +33%: 10.18±2.03 vs 13.53±1.14; CA3 field of hippocampus, +18%: 6.94±1.01 vs 8.21±0.81; paraventricular thalamic nucleus, +21%: 15.18±1.88 vs 18.35±2.08; lateral hypothalamic area, +40%: 12.68±1.90 vs 17.8±2.55; ventromedial hypothalamic nuclei, +19%: 7.16±0.92 vs 8.55±0.40; and dorsal raphe nucleus, +15%: 35.22±3.88 vs 40.68±3.11). Thus, we demonstrate, in the SNL model of neuropathic pain, the existence of opposite changes in the spinal expression of 5-HTT (down-regulation) and NAT (up-regulation), and the presence of supraspinal adaptive changes (up-regulation) only on 5-HTT density. These findings may help understanding the pathogeny of neuropathic pain and the differential analgesic action of antidepressants targeting 5-HTT and/or NAT transporters.


Assuntos
Encéfalo/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Medula Espinal/metabolismo , Animais , Regulação para Baixo , Masculino , Medição da Dor , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/lesões , Nervos Espinhais/metabolismo , Regulação para Cima
6.
Neurochem Res ; 37(5): 1037-42, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22270908

RESUMO

Lysophosphatidylinositol (LPI) is a biologically active lipid that produces a number of responses in cultured cells, and has been suggested to have neuroprotective properties in vivo. Some of the actions of LPI are mediated by G-protein coupled receptors, but it is not known whether G-protein coupled receptor-mediated responses can be seen in intact brain tissue. In consequence, in the present study, we investigated autoradiographically whether LPI increased the [(35)S]GTPγS binding level in brain tissue slices. In standard assay conditions, where as a positive control a robust response to cannabinoid receptor activation by the agonist ligand CP55,940 was seen, there was no increase in the autoradiographic density over basal produced by LPI. However, when the conditions were modified (incubation at 4°C rather than at 25°C, incubation time increased to 3 h, GDP concentration reduced from 2 to 0.1 mM), a significant increase in [(35)S]GTPγS autoradiographic density in response to 10 µM LPI was seen in the prefrontal cortex, hippocampus, and cortex at the level of the hippocampus, although the degree of increase was small and very variable. No significant increases were seen in the hypothalamus or cerebellum. It is concluded that LPI, in the right conditions, can activate a sufficient number of G-proteins in the rat prefrontal cortex and hippocampus to produce a response in the [(35)S]GTPγS autoradiographic assay of G-protein coupled receptor function.


Assuntos
Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hipocampo/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Radioisótopos de Enxofre/metabolismo , Animais , Autorradiografia , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/metabolismo , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley
7.
Brain Res ; 1373: 195-201, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145311

RESUMO

Ischaemic insult results in short-term changes in cannabinoid-1 (CB(1)) receptor expression in the brain, but it is not known whether long-term changes occur, which could potentially mean a change in the intrinsic ability of the brain to withstand new ischaemic episodes. In this study, we have investigated the expression and functionality of CB(1) receptors in coronal brain slices obtained from ovariectomised female rats 46days after middle cerebral artery occlusion (MCAO). The animals were treated with either 17ß-oestradiol or placebo pellets 6h after MCAO and thereafter housed either in isolated or enriched environments. [(3)H]CP55,940 autoradiography indicated no significant effect of 17ß-oestradiol treatment or housing environment upon CB(1) receptor densities. There was, however, a modest but significant decrease in the CB(1) receptor density on the ipsilateral side relative to the contralateral side in the frontal cortex, parietal cortex, CA1-CA3 regions of the hippocampus, thalamus and hypothalamus. CB(1) receptor functionality was assessed by measurement of basal and CP55,940-stimulated [(35)S]GTPγS autoradiography. In the frontal cortex, parietal cortex, CA1-CA3 regions of the hippocampus and dentate gyrus, a robust stimulation, blocked by the CB(1) receptor inverse agonist AM251, was seen. There were no significant changes in the response to CP55,940 with respect either to the 17ß-oestradiol treatment, housing environment or MCAO. Our results reveal that although there are modest long-term decreases in ipsilateral CB(1) receptor densities following MCAO in female rats, these decreases do not result in a functional CB(1) receptor deficit.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Infarto da Artéria Cerebral Média , Receptor CB1 de Canabinoide/metabolismo , Animais , Autorradiografia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Cicloexanóis/farmacocinética , Modelos Animais de Doenças , Estradiol/farmacologia , Estradiol/uso terapêutico , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Feminino , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Isótopos de Enxofre/farmacocinética , Fatores de Tempo , Trítio/farmacocinética
8.
Exp Neurol ; 224(1): 37-47, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20353772

RESUMO

There is now a large volume of data indicating that compounds activating cannabinoid CB(1) receptors, either directly or indirectly by preventing the breakdown of endogenous cannabinoids, can protect against neuronal damage produced by a variety of neuronal "insults". Given that such neurodegenerative stimuli result in increased endocannabinoid levels and that animals with genetic deletions of CB(1) receptors are more susceptible to the deleterious effects of such stimuli, a case can be made for an endogenous neuroprotective role of endocannabinoids. However, this is an oversimplification of the current literature, since (a) compounds released together with the endocannabinoids can contribute to the neuroprotective effect; (b) other proteins, such as TASK-1 and PPARalpha, are involved; (c) the CB(1) receptor antagonist/inverse agonist rimonabant has also been reported to have neuroprotective properties in a number of animal models of neurodegenerative disorders. Furthermore, the CB(2) receptor located on peripheral immune cells and activated microglia are potential targets for novel therapies. In terms of the clinical usefulness of targeting the endocannabinoid system for the treatment of neurodegenerative disorders, data are emerging, but important factors to be considered are windows of opportunity (for acute situations such as trauma and ischemia) and the functionality of the target receptors (for chronic neurodegenerative disorders such as Alzheimer's disease).


Assuntos
Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Citoproteção/fisiologia , Endocanabinoides , Neurônios/metabolismo , Animais , Humanos , Degeneração Neural/metabolismo , Fármacos Neuroprotetores/metabolismo , Receptores de Canabinoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...